Петрография и минералогия рудоносных гидротермально-метасоматических образований Майского золоторудного месторождения (Центральная Чукотка)

Изучены рудоносные гидротермально-метасоматические образования, развитые в пределах Майского рудного поля. Подробно описаны исходные породы и их гидротермально-метасоматические изменения, выделены два типа рудоносных метасоматитов и определена их формационная принадлежность.

Ключевые слова: Майское месторождение, Центральная Чукотка, метасоматиты, гидротермально-метасоматические изменения, золотое оруденение, рудное тело, березиты.

D. S. ARTEMEV (VSEGEI)

Petrography and mineralogy of ore-bearing hydrothermal-metasomatic formations of the Mayskoye gold field (Central Chukotka)

This article is devoted to the study of ore-bearing hydrothermal-metasomatic formations, developed within the Mayskoye ore field. A detailed description of the original rocks and hydrothermal-metasomatic changes marked two types of ore-bearing metasomatic rocks and picked their formational affiliation.

Keywords: Mayskoye deposit, Central Chukotka, metasomatites, hydrothermal-metasomatic changes, gold mineralization, ore body, beresites.

Введение. Майское месторождение является одним из самых крупных месторождений золота в пределах Чукотского автономного округа, а также России. По разным источникам его запасы оцениваются от 160 (В. Б. Голенев, 2002) до 280 т [6]. Месторождение, по классификации ЦНИГРИ [7], относится к золото-мышьяковисто-сульфидной формации в черносланцевых высокоуглеродистых толщах. Открыто в 1972 г. С. А. Григоровым в ходе проведения геологосъемочных работ в 1971—1972 гг. в районе Тамнеквуньского оловорудного узла.

В настоящее время месторождение разрабатывается подземным способом компанией ОАО «Полиметалл». Его изучением в разные годы занимался большой коллектив геологов на Северо-Востоке России. Однако не было единого мнения о природе образования золота, а также о механизме изменения вмещающих пород и их классификации. Предыдущие исследователи относили метасоматические породы к метаморфическим образованиям по устаревшей терминологии. Но уже С. А. Григоров (1980) и В. Б. Голенев (2002) отмечали, что «очень трудно определить, с какими процессами связаны метасоматические изменения осадочных пород», основная версия - региональный или контактовый метаморфизм и метасоматоз. Для вмещающих пород авторы дают следующую характеристику: «осветленные породы кварц-серицитового (иногда с карбонатом) состава, процессы метасоматоза, которые привели к образованию таких пород, генетически близки к грейзенизации».

В одной из самых поздних работ по Северо-Востоку России, в том числе и по Майскому месторождению, А. В. Волковым с соавторами [5] однозначно

не определены процессы изменения вмещающих пород Майского рудного поля. Генетическая классификация их весьма расплывчата, однако новообразованные минеральные ассоциации они связывают с «березитовыми изменениями», и метасоматические образования характеризуют как аргиллизиты и серицитолиты.

В работе представлена минералого-петрографическая характеристика вмещающих пород Майского рудного поля и гидротермально-метасоматических изменений (ГМИ) по современной единой методике, разработанной Е. В. Плющевым и др. [8—10]. Методика заключается в структурно-вещественной фиксации на микроскопическом уровне всех минеральных парагенезисов измененных пород. В каждом конкретном случае может быть выделено несколько разновременных минеральных парагенезисов со своими структурными отношениями.

Фактический материал представлен пробами горных пород, 176 прозрачно-полированными шлифами. Образцы собраны лично автором в 2012—2015 гг. во время работы в ОАО «ЗК «Майское» в должности участкового геолога. Микроскопические исследования выполнены на базе ФГБУ «ВСЕГЕИ» на микроскопе Leica DM 2500.

Геологическое строение Майского месторождения подробно охарактеризовано в работах Н. С. Бортникова [2], А. В. Волкова [3–5], М. М. Константинова [6, 7], А. А. Сидорова [11, 12], Д. С. Артемьева [1] и др. В статье приведено его краткое описание.

Майское рудное поле площадью 10 км², изометричной формы приурочено к сложной горстовой структуре, расположенной в узле пересечения северо-западных, северо-восточных, субширотных

и субмеридиональных разломов. Вмещающие породы — песчано-алевро-сланцевые отложения кевеемской, ватапваамской, релькувеемской и млелювеемской свит верхнего триаса. В алевро-сланцевых разностях свит отмечены многочисленные пиритовые конкреции.

Магматические породы — комплекс даек мелового возраста — занимают 25 % от общей площади месторождения. Их выходы образуют пояс шириной около 3 км и протяженностью более 4 км. В поясе дайки сгруппированы в серию сближенных тел меридионального простирания, с которыми пространственно связаны рудоносные зоны. А. В. Волков выделяет две группы разновозрастных даек: к первой относит гранит-гранодиоритпорфиры, аплиты и лампрофиры, ко второй более поздние риолит-порфиры [5].

Гидротермально-метасоматические изменения вмещающих пород Майского рудного поля представлены терригенно-осадочными образованиями верхнего триаса, разделенными на четыре свиты. Наиболее древняя кевеемская свита сложена существенно алевритовыми породами с редкими прослоями песчаников и алевропесчаников. Вышележащие ватапваамская и нерасчлененные релькувеемская и млелювеемская свиты характеризуются преобладанием в разрезе песчаников. Ниже описания неизмененных вмещающих терригенно-осадочных пород приведено по материалам И. Ю. Черепановой (2003).

Алевролиты имеют следующий минеральный состав: кварц (Q) от 40 до 70, альбит (Ab) до 15, реже в шлифах встречаются биотит (Bt) и мусковит (Мu) от 0 до 15 % каждый. Постоянно в породах присутствует от 10 до 30 % обломков тонкозернистых кремнистых пород и микрокварцитов. Структура алевритовая, тип цемента пленочный, реже пленочно-поровый, состоит в основном из слюдисто-кварцевого материала с высоким содержанием аморфного углистого вещества. Из новообразованных минералов в подчиненном количестве хлорит и серицит.

Алевропесчаники на 40—50 % состоят из кварца, плагиоклазы (альбит и олигоклаз) занимают от 10 до 15, обломки кремней и микрокварцитов 10—30 %. Реже встречаются биотит и мусковит (до 5—10 %). Структура пород алевропсаммитовая, тип цемента пленочно-поровый, состоит из слюдистоуглистого и кварц-гидрослюдистого материала.

Песчаники на 40–60 % состоят из мелкозернистого кварца, редко его содержание доходит до 70 %, плагиоклазы (альбит и олигоклаз) составляют от 1 до 15, обломки кремнистых пород 20–30 %. В подчиненном количестве встречаются биотит и мусковит (до 10 %), еще реже калиевые полевые шпаты в виде единичных зерен. Структура песчаников псаммитовая мелкозернистая, редко среднезернистая. Цемент пленочно-поровый, состоит преимущественно из слюд с примесью углистого и кремнистого вещества. Вторичные минералы — в основном хлорит и серицит.

В пределах Майского рудного поля развиты два типа гидротермально-метасоматических образований (ГМО): первый — метасоматиты с высоким содержанием общего углерода (от 0,5 до 3, в среднем 1,8 %), характерные для первой рудной зоны; второй — безуглеродистые метасоматиты (содержание общего углерода от 0 до 1,2, в среднем 0,2 %), закартированные во второй рудной зоне.

Макроскопически высокоуглеродистые метасоматиты (рис. 1) почти не отличаются от первичных алевролитов и песчаников. В большинстве случаев это массивные темно-серые и черные породы со следами трещиноватости и рассланцевания. Невооруженным глазом зачастую незаметны признаки ГМИ, которые ближе к рудным телам проявляются в виде тонких кварцевых прожилков с карбонатами, каолинитом и сульфидами.

При микроскопической диагностике выделяются ГМИ вмещающих пород: для кварца (Q) характерно присутствие трех генераций. Первая – реликтовые зерна изометричной, округлой формы, реже вытянутые, уплощённые, со следами бластеза направленной деформации с волнистым погасанием, размеры от 0,1 до 0,8, редко достигают по длинной оси 1,5 мм. Серицит и гидросерицит корродируют зерна кварца, образуя каймы обрастания. В некоторых случаях индивиды замещены полностью. Встречаются структуры волочения агрегатов кварца. Вторая генерация — новообразованные зерна кварца, тяготеющие к центральным частям рудных зон и образующие тонкие прожилки кварцанкеритового, кварц-слюдистого состава с сульфидами (пиритом и арсенопиритом). Форма выделения изометричная, чаще округлая, с зазубренными границами. Редко зерна подвержены слабому замещению серицитом и гидросерицитом, встречаются сдвойникованные агрегаты, размеры индивидов от 0,05 до 0,5 мм. Эта генерация кварца ассоциируется с основной продуктивной стадией формирования арсенопирит-пирит-золоторудной минерализацией, в которой золото находится в тонкодисперсной форме и связано с арсенопиритом. Третья генерация распространена в жилах, открытых полостях, зонах дробления и брекчирования мощностью до первых сантиметров. Кварц – крупные, иногда гигантозернистые агрегаты размером до 5-6 мм. Форма зерен изометричная, округлая, призматическая, часто встречаются идиоморфные выделения ромбического, пирамидального облика. Третья генерация ассоциируется с завершающей стадией золотого оруденения, выражена в формировании кварц-антимонитовой минеральной ассоциации с крупным видимым золотом.

Карбонаты (Сс) во вмещающих породах представлены также тремя генерациями, причем вторая и третья образуют параллельно-слоистые структуры. Первая – реликтовые выделения кальцита и доломита с характерной для них спайностью. Формы выделения чаще изометричные — округлые, таблитчатые зерна, реже ксеноморфные, угловатые, частично или полностью замещенные новообразованным карбонатом и слюдами. Встречаются структуры волочения агрегатов реликтового карбоната. Размеры в поперечнике от 0,01 до 0,15 мм. Вторая генерация — зерна разнообразной формы, зачастую имеют параллельно-слоистую ориентировку агрегатов, предположительно указывающую на направление движения гидротермально-метасоматического флюида либо вектор сжатия пород. Формы выделения имеют изометричный облик - округлые, почковидные зерна с пилообразными краями, часты сферолитовые выделения. Иногда кристаллы карбоната замещаются слюдами и сульфидами. Размеры в поперечнике от 0,01 до 0,1 мм. Зерна третьей генерации накладываются под острым углом на зерна предыдущей и образуют параллельно-слоистые цепочки разноориентированных идиоморфных

МЕТАЛЛОГЕНИЯ 119

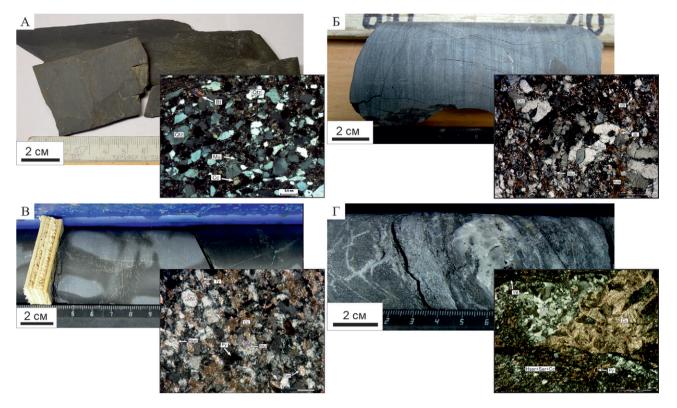


Рис. 1. Высокоуглеродистые березиты

A — неизмененные углисто-глинистые алевролиты и кварцевые песчаники: кварц, плагиоклаз, КПШ, биотит, мусковит, углистое вещество; B — слабопроявленные серицитовые, дросерицитовые березиты: кварц, биотит, мусковит, гидросерицит, серицит, углистое вещество +/- карбонат, турмалин; B — сильнопроявленные гидросерицитовые, карбонатные березиты: кварц, гидросерицит, карбонат (анкерит), серицит, углистое вещество, пирит +/-мусковит, турмалин; F — полнопроявленные кварцевые и рудные березиты: кварц, сульфиды (пирит, арсенопирит), карбонат +/- серицит, гидросерицит

кристаллов призматического и ромбического облика, а также зерен неправильной формы. Размеры индивидов от 0,02 до 0,1 мм.

Слюдистые минералы представлены серицитом (Ser) и гидросерицитом (HSer). По взаимоотношениям агрегатов генерации выделить не удалось. Слюды в большинстве случаев замещают как реликтовые (кварц, мусковит), так и новообразованные (кварц второй генерации, карбонат) минералы. Самые встречаемые формы выделения (лейсты, чешуйки, вытянутые пластинки) образуют веерообразные, радиально-лучистые скопления. В некоторых шлифах встречается параллельнослоистая ориентировка зерен. Размеры слюд от 0,01 до 0,2 мм.

Хлорит (Chl) и каолинит (Kl) встречаются в единичных случаях, выполняют тонкие (до 0,05 мм) трещины отрыва, занимающие секущее положение относительно всех породообразующих минералов. Хлорит образует скопления мелких лейст, чешуек и гексагональных зерен. Размер агрегатов менее 0,01 мм. Каолинит встречается в форме мелких червеобразных форм, пластинок и чешуек, размер агрегатов менее 0,01 мм.

Углистое вещество (УВ) представлено аморфными непрозрачными выделениями, заполняющими межзерновое пространство. Микроскопические частицы УВ размером < 0,01 мм образуют каемки вокруг породообразующих минералов, выполняя роль порового цемента. Иногда в зонах сильной трещиноватости и разуплотнения вмещающих пород УВ принимает вид базального цемента, образуя структуры течения, в котором

«плавают» породообразующие минералы. По данным А. В. Волкова [5], выделяются два вида УВ: аморфный углерод типа графит-антрацита и битумоиды типа антраксолит-керита. Н. С. Бортников [2] по оптическим свойствам аморфные выделения относит к витриниту, а промежуточные разности между витринитом и графитом к шунгиту.

Акцессорные минералы представлены цирконом (Zr), рутилом (Ru), турмалином (Ту), крайне редко апатитом (Ар). Цирконы — чаще зерна идиоморфного облика, вытянутые призмы, по краям ограниченные пирамидами. Размеры по длинной оси 0,2 мм. Рутил — вытянутые игольчатые кристаллы, часто образующие в кварце радиально-лучистые скопления, размер в поперечнике менее 0,01 мм. Редко встречаются единичные зерна турмалина гипидиоморфного облика. Кристаллы формы призмы, одна из вершин которой ограничена пирамидой, другая имеет неровную границу. Очень редко встречается апатит в виде изометричных, почти изотропных кристаллов размером до 0,05 мм.

Рудная минерализация — в основном пирит (Ру), арсенопирит (Ars), антимонит (Ant); реже встречаются марказит, халькопирит, галенит, сфалерит, станнин, пирротин, блеклые руды и др. [2–5, 12].

Описанные ГМИ вмещающих терригенных пород, по методике Е. В. Плющева и др. [8–10], относятся к березитовой формации, образование которой обусловлено низкотемпературным (250—310 °C), слабокислотным (рН 4–5) метасоматозом послемагматической стадии. Для березитовой формации обязательно наличие следующих новообразованных минералов: кварц (Q), серицит (Ser),

Березиты Майского месторождения и их фациальные разновидности

Тип	Класс	Фация	Состав фаций
Высокоуглеродистые березиты	Неизмененные породы Слабопроявленные березиты Сильнопроявленные Полнопроявленные	A-1 A-2 A-3 A-4 A-5 A-6	$Q + Pl + Kfs + Bt + Mu \pm Ser$ $(Ser + Q + Bt + Mu + YB) \pm (Py + Cc + HSer + Ty)$ $(HSer + Q + Cc + YB + Py) \pm (Ser + Mu + Ty)$ $(Cc + HSer + Q + Py + YB) \pm (Ser + Ty)$ $(Q + Cc + Py) \pm (HSer + Ser + YB)$ $(Pv + Ars + Ant + Q) \pm (Cc + HSer + Ser + YB)$
Безуглеродистые березиты	Слабопроявленные березиты Сильнопроявленные Полнопроявленные	Б-1 Б-2 Б-3 Б-4	$(HSer + Q + Ser + Kl) \pm (Cc + Chl + Mu + Py)$ $(Cc + Ser + Q + Kl) \pm (HSer + Chl + Py)$ $(Ser + HSer + Q + Kl + Py) \pm (Cc + Chl + Ars)$ $(O + Ser + HSer + Kl + Py) \pm (Chl + Ars)$

гидросерицит (HSer), карбонаты (Cc), адуляр (Ad), пирит (Ру), характерных (кроме адуляра) для Майского месторождения.

По степени изменения исходных пород и количеству новообразованных минералов ГМО разделены на четыре класса (таблица): неизмененные породы, в которых количество новообразованных минералов от 0 до 5 %; слабопроявленные березиты от 5 до 15 %; сильнопроявленные березиты от 15 до 50 %; полнопроявленные березиты более 50 %. По преобладанию парагенезисов новообразованных минералов выделено шесть фаций березитов, которые сменяют друг друга от периферии рудного тела к его центру и образуют метасоматическую колонку, характерную для первой рудной зоны.

 Φ ация A-1 представлена углисто-глинистыми алевролитами и песчаниками (минеральный состав приведен в начале главы). Φ ация A-2 — углеродистые серицитовые березиты следующего минерального состава: (Ser + Q + Bt + Mu + УВ) \pm (Py + + Cc + HSer + Ty). Фация A-3- углеродистые гидросерицитовые березиты (HSer + \dot{Q} + $\dot{C}c$ + $\dot{Y}B$ ++ Py) ± (Ser + Mu + Ty). Фация A-4 – углеродистые карбонатные березиты (Cc + HSer + Q + Py ++ УВ) \pm (Ser + Ту). Фация A-5- углеродистые кварцевые березиты (Q + Cc + Py) \pm (HSer + Ser + УВ). Φ ация A-6 — рудные березиты (Py + Ars + Ant + $+ Q) \pm (Cc + HSer + Ser + YB)$. Характерные фации: для неизмененных пород фация А-1, для слабопроявленных углеродистых березитов фации A-2 и A-3, для сильнопроявленных углеродистых березитов фация А-4, для полнопроявленных углеродистых березитов фации А-5 и А-6.

Необходимо отметить наложенные низкотемпературные процессы пропилитизации и аргиллизации, выраженные в образовании секущих трещин в березитах, выполненных для первого процесса хлоритом, серицитом и гидросерицитом, а для второго каолинитом и кварцем. Суммарная доля участия поздних ГМО во вмещающих породах не превышает 5 %.

Макроскопически *безуглеродистые* метасоматиты (рис. 2) выглядят осветленными терригенноосадочными породами бежевого или светло-серого цвета. Такая окраска объясняется отсутствием УВ в породах, а также наложенным массивным окварцеванием и серицитизацией на весь объем метасоматитов. На микроскопическом уровне эти метасоматиты имеют сходный состав породообразующих

минералов и сходные структурно-текстурные признаки с высокоуглеродистыми ГМО. Основные различия - отсутствие УВ, весьма ограниченная распространенность брекчий и антимонита. До 10 % возрастает доля хлорита и каолинита. По аналогии безуглеродистые метасоматиты отнесены к березитовой формации, по степени проявленности наложенных процессов разделены на три класса (таблица): слабопроявленные березиты от 5 до 15; сильнопроявленные березиты от 15 до 50; полнопроявленные березиты более 50 %. По характерным парагенезисам новообразованных минералов выделены четыре фации, которые сменяют друг друга от периферии рудного тела к его центру, образуя метасоматическую колонку, характерную для второй рудной зоны.

Фация B-1 — гидросерицитовые березиты — имеет следующий минеральный состав: (HSer + Q + Ser + Kl) \pm (Cc + Chl + Mu + Py). Фация B-2 — карбонатные березиты (Cc + Ser + Q + Kl) \pm (HSer + Chl + Py). Фация B-3 — серицитовые березиты (Ser + HSer + Q + Kl + Py) \pm (Cc + Chl + Ars). Фация B-4 — кварцевые березиты (Q + Ser + HSer + Kl + Py) \pm (Chl + Ars). Для слабопроявленных березитов характерна фация B-1; для сильнопроявленных — фация B-2; для полнопроявленных — фации B-3 и B-4.

В пределах центрального блока граница между двумя типами березитов проводится по крутопадающей дайке гранодиорит-порфиров, а на флангах рудного поля безуглеродистые метасоматиты постепенно переходят в углеродистые. Местами отмечается пилообразный контакт.

Заключение. Проведена классификация вмещающих пород и руд Майского золоторудного месторождения на основе современной методики изучения ГМО, разработанной Е. В. Плющевым с соавторами [8-10]. Выделены устойчивые ассоциации новообразованных минералов. ГМО, по классификации Е. В. Плющева и др., отнесены к березитовой формации. Формирование золотомышьяк-сурьмяного оруденения связано с деятельностью остаточных слабокислых гидротермальных растворов в первично-терригенно-осадочных породах. В зонах повышенной проницаемости деятельность гидротерм была наиболее активной, замещение первичных пород ассоциациями вторичных минералов в большинстве случаев составляет 100 %.

МЕТАЛЛОГЕНИЯ 121

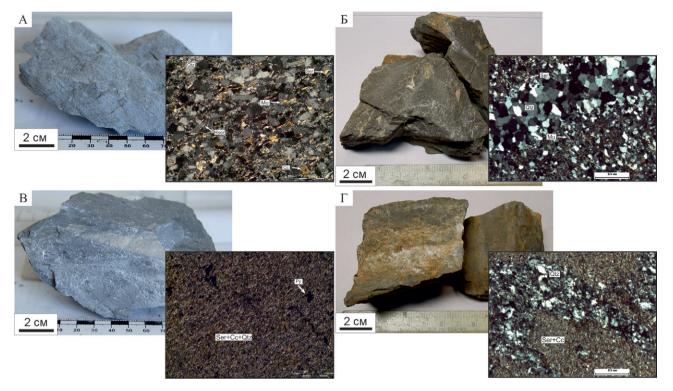


Рис. 2. Безуглеродистые березиты

A — слабопроявленные гидросерицитовые березиты: гидросерицит, кварц, серицит, каолинит +/- карбонат, хлорит, мусковит, пирит; B — сильнопроявленные карбонатные березиты: карбонат, серицит, кварц, каолинит +/- гидросерицит, хлорит, пирит; B — полнопроявленные серицитовые березиты: серицит, карбонат, кварц, каолинит, пирит +/- хлорит; Γ — полнопроявленные кварцевые березиты: кварц, серицит, карбонат, каолинит, пирит +/- хлорит

Для высокоуглеродистых ГМО характерна метасоматическая колонка, выраженная в смене минеральных ассоциаций от периферии к центру: Q ++ Pl + Kfs + Bt + Mu \pm Ser; (Ser + Q + Bt + Mu + + YB) \pm (Py + Cc + HSer + Ty), (HSer + Q + Cc + + YB + Py) \pm (Ser + Mu + Ty), (Cc + HSer + Q + + Py + YB) \pm (Ser + Ty), (Q + Cc + Py) \pm (HSer + + Ser + YB), (Py + Ars + Ant + Q) \pm (Cc + HSer + + Ser + YB).

Для безуглеродистых ГМО характерна следующая смена минеральных ассоциаций: (HSer + Q + + Ser + Kl) \pm (Cc + Chl + Mu + Py), (Cc + Ser + + Q + Kl) \pm (HSer + Chl + Py), (Ser + HSer + Q + Kl + Py) \pm (Cc + Chl + Ars), (Q + Ser + HSer + Kl + Py) \pm (Chl + Ars).

По количеству генераций новообразованных минералов (кварц, карбонат) выделяются три стадии формирования ГМО в соответствии с количеством рудных ассоциаций [1].

В рудолокализующей структуре второго рудного тела с глубиной увеличивается доля УВ, вмещающие породы и руды постепенно сменяются углеродистыми метасоматитами, сходными с такими же первого рудного тела.

Можно предположить, что безуглеродистые метасоматиты являются верхней частью метасоматической колонки, которая в пределах первого рудного тела эродирована. На глубоких горизонтах в структуре второго рудного тела предполагаются оруденение, по типу сходное с высокоуглеродистыми метасоматитами, и бонанцевые руды с видимым золотом.

- 1. *Артемьев Д.С.* Особенности геологического строения и вертикальной зональности рудных тел Майского золоторудного месторождения (Центральная Чукотка) // Регион. геология и металлогения. 2015. № 64. С. 94—100.
- 2. *Бортников Н.С., Брызгалов И.А.* и др. Майское многоэтапное прожилково-вкрапленное золото-сульфидное месторождение (Чукотка, Россия): минералогия, флюидные включения, стабильные изотопы (О и S), история и условия образования // Геология рудных м-ний. 2004. Т. 46. № 6. С. 475—509.
- 3. Волков А.В., Сидоров А.А. Уникальный золоторудный район Чукотки. М.: ИГЕМ РАН, 2001.-180 с.
- 4. *Волков А.В., Сидоров А.А.* и др. Золото-сульфидные месторождения вкрапленных руд Северо-Востока России // Геология рудных м-ний. 2002. Т. 44. № 3. С. 179—197.
- 5. Волков А.В., Гончаров В.И., Сидоров А.А. Месторождения золота и серебра Чукотки. М.: ИГЕМ РАН, $2006.-221~\mathrm{c}.$
- 6. Константинов М.М., Некрасов Е.М. и др. Золоторудные гиганты России и мира. М.: Научный мир, $2000.-272~{\rm c.}$
- 7. *Константинов М.М.* Золоторудные провинции мира. М.: Научный мир, 2006. 358 с.
- 8. *Плющев Е.В., Ушаков О.П.* и др. Методика изучения гидротермально-метасоматических образований. Л.: Недра, 1981. 262 с.
- 9. *Плющев Е.В., Шатов В.В.* Геохимия и рудоносность гидротермально-метасоматических образований. Л.: Недра, 1985.-247 с.
- 10. Плющев Е.В., Шатов В.В., Кашин С.В. Металлогения гидротермально-метасоматических образований. СПб.: ВСЕГЕИ, 2012. 560 с. (Труды ВСЕГЕИ. Новая серия. Т. 354).
- 11. Сидоров А.А., Волков А.В. К проблеме роли углеродистого вещества в рудообразовании (Майское золоторудное месторождение, Центральная Чукотка) // Докл. РАН. 1999. Т. 369. № 2. С. 241—243.

- 12. Сидоров А.А., Волков А.В. Майское золото-сульфидное месторождение вкрапленных руд (Центральная Чукотка) // Российская Арктика: геологическая история, минерагения, геоэкология. СПб.: ВНИИОкеангеология, 2002. С. 711—729.
- 1. Artemev D.S. The geological structure and vertical zoning of ore bodies Mayskoye gold deposit (Central Chukotka). *Region. geologiya i metallogeniya*. 2015. No 64, pp. 94–100. (In Russian).
- 2. Bortnikov N.S., Bryzgalov I.A. Mayskoye multistage vein-disseminated gold-sulphide deposit (Chukotka, Russia): mineralogy, fluid inclusions, stable isotopes (O and the S), history and education conditions. *Geology rudnyh mestorozhdeniy*. 2004. Vol. 46. No 6. pp. 475–509. (In Russian).

2004. Vol. 46. No 6, pp. 475–509. (In Russian).

3. Volkov A.V., Sidorov A.A. Unikal'nyy zolotorudnyy rayon Chukotki [The unique gold ore district of Chukotka]. Moscow: IGEM RAS, 2001. 180 p.

4. Volkov A.V., Sidorov A.A. Gold-sulphide deposits of disseminated ores of the North-East of Russia. *Geology rudnyh*

mestorozhdeniy. 2002. Vol. 44. No 3, pp. 179—197. (In Russian). 5. Volkov A.V., Goncharov V.I., Sidorov A.A. Mestorozhdeniya zolota i serebra Chukotki [Gold and silver deposits in Chukotka]. Moscow: IGEM RAS; Magadan, MVKNII FEO RAS. 2006. 221 p.

- 6. Konstantinov M.M., Nekrasov E.M. Zolotorudnye giganty Rossii i mira [Gold giants of Russian and world]. Moscow: Scientific World. 2000. 272 p.
- 7. Konstantinov M.M. Zolotorudnye provincii mira [Gold provinces of World]. Moscow: Scientific World. 2006. 358 p.
- 8. Plyushev E.V., Ushakov O.P. et al. Metodika izucheniya gidrotermal'no-metasomaticheskih obrazovaniy [Methods of study of hydrothermal-metasomatic formations]. Leningrad: Nedra. 1981. 262 p.
- 9. Plyushev E.V., Shatov V.V. Geohimiya i rudonosnost' gidrotermal'no-metasomaticheskih obrazovaniy [Geochemistry and ore-bearing hydrothermal-metasomatic formations]. Leningrad: Nedra. 1985. 247 p.
- 10. Plyushev E.V., Shatov V.V., Kashin S.V. Metallogeniya gidrotermal'no-metasomaticheskih obrazovaniy [Metallogeny hydrothermal-metasomatic formations]. St. Petersburg: VS-EGEI. 2012. 560 p.
- 11. Sidorov A.A., Volkov A.V. On the problem of the role of the carbonaceous matter in the ore formation (Mayskoye gold deposit, Central Chukotka). *Dokl. Russian Academy of Sciences*. 1999. Vol. 369. No 2, pp. 241–243. (In Russian).
- 12. Sidorov A.A., Volkov A.V. Mayskoye gold-sulphide deposits of disseminated ores (Central Chukotka). *The Russian Arctic: Geological History, Mineragenesis, Environmental Geology.* St. Petersburg. 2002, pp. 711–729. (In Russian).

Артемьев Дмитрий Сергеевич — аспирант, вед. инженер, Всероссийский научно-исследовательский геологический институт им. А.П. Карпинского (ВСЕГЕИ). Средний пр., 74, Санкт-Петербург, 199106, Россия. <dmitry artemiev@vsegei.ru>

Artemev Dmitriy Sergeevich – Ph.D. Student, Leading Engineer, A.P. Karpinsky Russian Geological Research Institute (VSEGEI). 74, Sredny Prospect, St. Petersburg, 199106, Russia. karpinsky Russian Geological Research Institute (VSEGEI). 74, Sredny Prospect, St. Petersburg, 199106, Russia. karpinsky Russian Geological Research Institute (VSEGEI). 74, Sredny Prospect, St. Petersburg, 199106, Russian karpinsky Russian Geological Research Institute (VSEGEI). 74, Sredny Prospect, St. Petersburg, 199106, Russian karpinsky Russian Geological Research Institute (VSEGEI). 74, Sredny Prospect, St. Petersburg, 199106, Russian karpinsky Russian Geological Research Institute (VSEGEI). 74, Sredny Prospect, St. Petersburg, 199106, Russian <a href="mailto:karpinsky Russian Geological Research Russian Geological Russian Geologi

МЕТАЛЛОГЕНИЯ 123