
The Greenland ice core from NorthGRIP (NGRIP) con-
tains a proxy climate record across the
Pleistocene–Holocene boundary of unprecedented clar-
ity and resolution. Analysis of an array of physical and
chemical parameters within the ice enables the base of
the Holocene, as reflected in the first signs of climatic
warming at the end of the Younger Dryas/Greenland
Stadial 1 cold phase, to be located with a high degree of
precision. This climatic event is most clearly reflected in
an abrupt shift in deuterium excess values, accompa-
nied by more gradual changes in !18O, dust concentra-
tion, a range of chemical species, and annual layer
thickness. A timescale based on multi-parameter annual
layer counting provides an age of 11,700 yr b2k (before
AD2000) for the base of the Holocene, with an esti-
mated 2" uncertainty of 99 yr. It is proposed that an
archived core from this unique sequence should consti-
tute the Global Stratotype Section and Point (GSSP) for
the base of the Holocene Series/Epoch (Quaternary Sys-
tem/Period)

Introduction

Holocene is the name given to the second series or epoch of the Qua-
ternary System/Period, the most recent interval of Earth history,

which extends to and includes the present day. Despite being the
most intensively studied interval of recent geological time, a defini-
tion of the base of the Holocene (the Pleistocene–Holocene bound-
ary) has not been formally ratified by the International Commission
on Stratigraphy (ICS). Here we summarise a proposal to the ICS for
a Global Stratotype Section and Point (GSSP) for the base of the
Holocene Series/Epoch. 

The Pleistocene–Holocene boundary

The conventional approach to subdivision of the Quaternary strati-
graphic record is to employ evidence for contrasting climate conditions
to characterise individual stratigraphic (geologic-climatic) units
(American Commission on Stratigraphic Nomenclature, 1961, 1970).
For a variety of reasons, however, the Pleistocene–Holocene boundary
has proved difficult to define in conventional Quaternary depositional
sequences (Morrison, 1969; Bowen, 1978). Moreover, although an age
of 10,000 14C yr BP for the base of the Holocene is widely cited in the
Quaternary literature (e.g., Mangerud et al., 1974), precise dating of the
boundary has also proved to be problematical (Lowe & Walker, 2000).
One context where many of these difficulties may be overcome is the
polar archive, and here we present a proposal for defining a GSSP for
the Pleistocene–Holocene boundary on the basis of its clear climatic
signature in the NorthGRIP (NGRIP) Greenland ice-core record. 

The appropriateness of defining a global geological stratotype in
an ice-core sequence might be questioned, but there are sound reasons
for this proposal:

i) As glacier ice is a sediment, defining the Holocene boundary
stratotype in an ice-core is as justified as basing a stratotype on hard or
soft rock sequences. 
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(ii) Ice sheets form through the annual incremental accumula-
tion of snow, and hence there is a continuity of accumulation (sedi-
mentation) across the Pleistocene–Holocene boundary. 

(iii) Because of its geographical location in the high latitude
North Atlantic, Greenland is a sensitive barometer of hemispherical-
scale climate change, and was especially so at the
Pleistocene–Holocene transition when the Greenland ice sheet lay
mid-way between the wasting Eurasian and Laurentide ice masses. 

(iv) The base of the Holocene in the Greenland ice-core record
can be very precisely dated by annual ice-layer counting (see below).
The boundary stratotype for the Holocene (GSSP) can therefore be
defined at a level of chronological precision that is likely to be unat-
tainable in any other terrestrial stratigraphic context.

(v) The Greenland ice-core record has been proposed by an
INQUA project group (INTIMATE) as the stratotype for the Late
Pleistocene in the North Atlantic region (Walker et al., 1999) and an
‘event stratigraphy’ was initially developed for the Last Termination
based on the oxygen isotope record in the GRIP ice core (Björck et
al., 1998). More recently, the INTIMATE group has proposed that
the new NGRIP isotopic record should replace GRIP as the strato-
type, using the GICC05 chronology described below (Lowe et al.,
2008).

The NGRIP ice core

In Greenland, five major deep-drilling programmes (Figure 1) have
been undertaken over the last 40 years (Johnsen et al., 2001), the
most recent of which, NorthGRIP (NGRIP) was drilled to bedrock in
2003 (borehole NGRIP2, central Greenland ice sheet; 75.10˚N;
42.32˚W). This is the deepest core so far recovered from Greenland
(3085 m), and the base is dated to c. 123 k yr BP (Dahl-Jensen et al.,
2002; North Greenland Ice Core Project Members, 2004). The

NGRIP cores are archived at the University of Copenhagen, and
access to these can be gained through the NGRIP curator via the
NGRIP Steering Committee. The NGRIP core contains the most
highly-resolved stratigraphic record in any of the Greenland ice
cores of the transition from the Pleistocene to the Holocene, and this
is reflected in both the visual stratigraphy (annual ice layer thick-
ness) and in a range of chemical indicators (Figure 2). In addition, a
high-resolution stratigraphic timescale (Greenland Ice Core Chron-
ology 2005, or GICC05: Vinther et al., 2006; Rasmussen et al.,
2006; Andersen et al., 2006) has been developed based on annual
layer counting using stable isotopes and high-resolution impurity
measurements. It is proposed that the Global Stratotype Section and
Point (GSSP) for the base of the Holocene (Pleistocene–Holocene
boundary) should be defined in the NGRIP ice-core record at the
horizon which marks the clearest signal of climatic change at the end
of the last glacial episode (Younger Dryas Stadial/Greenland Stadial
1) of the Pleistocene.

Proposed GSSP for the base of the
Holocene Series/Epoch

In the Greenland ice cores, the transition to the Holocene is marked
by a shift to ‘heavier’ oxygen isotope values (!18O) between Green-
land Stadial 1 (GS-1)/Younger Dryas ice and ice of early Holocene
age; a rapid decline in dust concentration from GS-1 to modern lev-
els; a significant change in ice chemistry (e.g., reduction in sodium
concentration); and an increase in annual ice-layer thickness
(Johnsen et al., 2001; Figure 2). These changes reflect a marked
change in atmospheric circulation regime accompanied by a temper-
ature rise, of c. 10 ± 4˚C, at the onset of the Holocene (Severinghaus
et al., 1998; Grachev and Severinghaus, 2005). 

In the NGRIP core, this climatic shift is most clearly marked by
a change in deuterium excess values (Figure 2b: red curve) which
occurs before or during the interval over which the changes outlined
above are recorded. Deuterium (D) and 18O are important isotopic
components of precipitation and in high northern latitudes and the
relative deviation per mille (‰) from that in Standard Mean Ocean
Water (SMOW) is indicated by !D and !18O, respectively (Johnsen
et al., 1989). The approximate current relationship between !D and
!18O is given by: !D = 8.0 !18O + 10‰, the 10‰ being the so-called
deuterium excess. Deuterium excess in the Greenland ice-core
records indicates changes in the physical conditions at the oceanic
origins of arctic precipitation and, in particular, can be considered a
proxy for past sea-surface temperature in the moisture source
regions of the oceans (Johnsen et al., 1989; Masson-Delmotte et al.,
2005; Jouzel et al., 2007). The deuterium excess record shows a
2–3‰ decrease at the Pleistocene–Holocene transition, correspond-
ing to an ocean-surface temperature decline of 2–4˚C. This is inter-
preted as a change in the source of Greenland precipitation from the
warmer mid-Atlantic during glacial times to colder higher latitudes
in the early Holocene (Johnsen et al., 1989; Masson-Delmotte, et al.,
2005). The change reflects a sudden reorganisation of the Northern
Hemisphere atmospheric circulation related to the rapid northward
movement of the oceanic polar front at the end of the Younger Dryas
Stadial/Greenland Stadial 1 (Ruddiman and Glover, 1975; Ruddi-
man and McIntyre, 1981). Hence the deuterium excess record is an
excellent indicator of the first major climatic shift at the Pleisto-
cene–Holocene boundary.

Sampling at 5 cm intervals (annual resolution or greater) across
the Pleistocene-Holocene transition in the NGRIP core enables the
abrupt decline in deuterium excess to be pinpointed with great preci-
sion (Figure 2b). At 1492.45 m depth, the 2–3‰ decrease in deu-
terium excess occurs within a period of 1–3 yr and, over the next few
decades, the !18O changes from glacial to interglacial values
(reflecting the temperature-dependent nature of the fractionation of
oxygen isotopes), and there is an order of magnitude drop in dust
concentration, reflecting a reduction in dust flux to the ice sheet. The
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Figure 1  The locations of five deep drilling sites on the Greenland
ice sheet: NGRIP (75.1˚N, 42.3˚W), GRIP (72.5˚N, 37.3˚W),
GISP-2 (72.5˚N, 38.3˚W), Dye-3 (65.2˚N, 43.8˚W) and Camp
Century (77.2˚N, 61.1˚W). Also shown is the shallower site (324m)
of Renland (71.3˚N, 26.7˚W). At all of these sites, the ice-core
record extends back to the last (Eemian) interglacial.  Map by S.
Ekholm, Danish Cadastre.



base of the Holocene can therefore be defined on the basis of the
marked change in deuterium excess values that occurred over an
interval of c. 3 yr, and the stratigraphic boundary is further under-
pinned by shifts in several other key proxies that occurred over sub-
sequent decades. As such, the NGRIP ice core constitutes a strato-
type for the base of the Holocene of unparalleled detail and chronol-
ogical precision.

The age of the base of the Holocene is derived from annual ice-
layer counting across the Pleistocene–Holocene boundary and
through ice from the entire Holocene. This involves the analysis of a
range of physical and chemical parameters including dust concentra-
tion, conductivity of ice and melted samples, !18O and !D, and a
range of chemical species including Ca2+,  NH+, NO-, Na+ and SO2-

(Rasmussen et al., 2006; Figure 2). Many of these vary seasonally,
thereby enabling annual ice layers to be determined with a high
degree of precision. In the upper levels of  Greenland ice cores,
annual ice layers can be readily identified on the basis of the !18O
record and seasonal variations in ice chemistry (Hammer et al.,
1986; Meese et al., 1997). However, because of the relatively low
accumulation rate at the NGRIP drill site, and the sensitivity of
annual cycles in !18O to diffusion, NGRIP !18O data are not suitable
for the identification of annual ice layers, and there are no continu-
ous chemistry measurements with sufficiently high resolution for the
determination of annual layers in the section of the NGRIP core back
to c. 1405 m depth (10,227 yr). In order to obtain a complete
Holocene chronology for NGRIP, therefore, it is necessary to link
the early Holocene record with that from other Greenland core sites,
Dye-3 and GRIP (Figure 1). The former is located in south-east
Greenland where higher ice accumulation rate has enabled the best
resolved of all the Greenland ice-core timescales for the mid- and
late-Holocene to be constructed (Vinther et al., 2006). The Pleisto-
cene-Holocene boundary cannot be accurately defined nor dated in
that core, however, because of progressive ice-layer thinning due to
the flow of the ice. Near the lower limit at which annual ice layers

can be resolved in the Dye-3 core, there is a significant decline in
!18O values to below normal Holocene levels that persists for a few
decades. This marks the ‘8.2 ka cold event’ that is also clearly
recorded in the various proxy climate indicators in the NGRIP core
(Thomas et al., 2007). In both Dye-3 and NGRIP, the !18O reduction
marking the 8.2 ka event is also accompanied by a prominent ECM
double peak and a marked increase in fluoride content. This repre-
sents the fall-out from a volcanic eruption, almost certainly on Ice-
land. The location of the double ECM peak inside the !18O mini-
mum around 8000 yr BP constitutes a unique time-parallel marker
horizon for correlating all Greenland ice-core records.    

In the original Dye-3 core, the annual layer situated in the mid-
dle of the ECM double peak was dated at 8214 yr BP with an uncer-
tainty of 150 yr (Hammer et al., 1986). Subsequent high-resolution
analysis of the Dye-3 stable isotopes has enabled this age estimate to
be considerably refined and it is now dated to 8236 yr b2k with a
maximum counting error1 of only 47 yr (Vinther et al., 2006). The
term b2k refers to the ice-core zero age of AD 2000; note that this is
50 yr different from the zero yr for radiocarbon, which is AD 1950.
Multi-parameter annual layer counting down from the 8236 yr dou-
ble ECM horizon within the !18O minimum in the GRIP and NGRIP
cores gives an age for the base of the Holocene, as determined by the
shift in deuterium excess values, of 11,703 yr b2k with a maximum
counting error of 52 yr (Rasmussen et al., 2006). The total maximum
counting error (Dye-3 plus GRIP and NGRIP) associated with the
age of the Pleistocene–Holocene boundary in NGRIP is therefore 99
yr, which is here interpreted as equivalent to a 2" uncertainty. In
view of the 99 yr uncertainty, however, it seems appropriate to
assign an age to the boundary of 11,700 yr b2k. Accordingly, we rec-
ommend that the GSSP for the base of the Holocene be defined and
dated at a depth of 1492.45 m in the Greenland NGRIP ice core.

Note 1: The uncertainty estimate of the GICC05 time scale is
derived from the number of potential annual layers that the investi-
gators found difficult to interpret. These layers were counted as 0.5
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Figure 2 (a) The !!18O record through the Last Glacial–Interglacial Transition showing the position of the
Pleistocene–Holocene boundary in the NGRIP core; (b) High-resolution multi-parameter record across the
Pleistocene–Holocene boundary: !!18O, electrical conductivity (ECM), annual layer thicknesses corrected for flow-induced
thinning, (ªcorr) in arbitrary units, Na+ concentration, dust content, and deuterium excess.



± 0.5 years, and the so-called maximum counting error (mce) is
defined as one half times the number the these features. At the base
of the Holocene, the mce is 99 years. Strictly speaking, the value of
the mce cannot be intepreted as a standard Gaussian uncertainty
estimate, but it is estimated that the true age of the base of the
Holocene is within 99 yr of 11,703 yr b2k with more than 95% prob-
ability. For further discussion see Andersen et al. (2006). 
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